Configuration Reference
This page details all the tunable parameters for the HOTPANTS algorithm, which are managed through the HotpantsConfig class.
- class hotpants.config.HotpantsConfig(**kwargs)
Configuration class for HOTPANTS parameters.
This class holds all the tunable parameters for the HOTPANTS algorithm, mirroring the command-line flags of the original C implementation. Default values are set to match the original code.
An instance of this class is created by the Hotpants object, but a custom, pre-configured instance can also be passed during initialization.
- tuthresh
Upper valid data count for the template. (Default: dynamically set to max value).
- Type:
float
- tuktresh
Upper valid data count for kernel fitting on the template. (Default: Same as tuthresh).
- Type:
float
- tlthresh
Lower valid data count for the template. (Default: dynamically set to min value).
- Type:
float
- tgain
Gain in template (e-/ADU). (Default: 1.0).
- Type:
float
- trdnoise
Read noise in template (e-). (Default: 0.0).
- Type:
float
- tpedestal
ADU pedestal in template. (Default: 0.0).
- Type:
float
- iuthresh
Upper valid data count for the image. (Default: dynamically set to max value).
- Type:
float
- iuktresh
Upper valid data count for kernel fitting on the image. (Default: Same as iuthresh).
- Type:
float
- ilthresh
Lower valid data count for the image. (Default: dynamically set to min value).
- Type:
float
- igain
Gain in image (e-/ADU). (Default: 1.0).
- Type:
float
- irdnoise
Read noise in image (e-). (Default: 0.0).
- Type:
float
- ipedestal
ADU pedestal in image. (Default: 0.0).
- Type:
float
- rkernel
Convolution kernel half-width in pixels. (Default: 10).
- Type:
int
- ko
Spatial order of kernel variation within a region. (Default: 2).
- Type:
int
- bgo
Spatial order of background variation within a region. (Default: 1).
- Type:
int
- fitthresh
RMS threshold for good centroids in kernel fit. (Default: 20.0).
- Type:
float
- nss
Number of centroids (sub-stamps) to use for each stamp. (Default: 3).
- Type:
int
- rss
Half-width of sub-stamps to extract around each centroid. (Default: 15).
- Type:
int
- ks
High sigma rejection for bad stamps in the kernel fit. (Default: 2.0).
- Type:
float
- kfm
Fraction of absolute kernel sum for a pixel to be considered ‘OK’. (Default: 0.990).
- Type:
float
- stat_sig
Threshold for sigma clipping statistics. (Default: 3.0).
- Type:
float
- kf_spread_mask1
Fraction of kernel half-width to spread input masks by. (Default: 1.0).
- Type:
float
- verbose
Level of verbosity, 0-2. (Default: 1).
- Type:
int
- force_convolve
Force convolution on ‘t’ (template) or ‘i’ (image). ‘b’ for best. (Default: ‘b’).
- Type:
str
- normalize
Normalize to ‘t’ (template), ‘i’ (image), or ‘u’ (unconvolved). (Default: ‘t’).
- Type:
str
- fom
Figure-of-merit for choosing convolution direction: ‘v’ (variance), ‘s’ (sigma), or ‘h’ (histogram). (Default: ‘v’).
- Type:
str
- fillval
Value for invalid (bad) pixels in the difference image. (Default: 1.0e-30).
- Type:
float
- fillval_noise
Value for invalid pixels in the noise image. (Default: 0.0).
- Type:
float
- rescale_ok
If True, rescale noise for ‘OK’ pixels. (Default: False).
- Type:
bool
- conv_var
If True, convolve variance instead of noise. (Default: False).
- Type:
bool
- use_pca
If True, use PCA to model the kernel basis. (Default: False).
- Type:
bool
- nstampx
Number of stamps to place in the x-direction per region. (Default: 10).
- Type:
int
- nstampy
Number of stamps to place in the y-direction per region. (Default: 10).
- Type:
int
- output_file
Path to save the difference FITS image. (Default: None).
- Type:
str
- noise_image_file
Path to save the noise FITS image. (Default: None).
- Type:
str
- mask_image_file
Path to save the mask FITS image. (Default: None).
- Type:
str
- convolved_image_file
Path to save the convolved FITS image. (Default: None).
- Type:
str
- sigma_image_file
Path to save the sigma (difference/noise) FITS image. (Default: None).
- Type:
str
- stamp_region_file
Path to save the DS9 region file of stamps. (Default: None).
- Type:
str
- Kernel composition parameters
- -----------------------------
- The following parameters control how the convolution kernel is constructed
- from a sum of Gaussians. They mirror the `-ng` style flags in the
- original HOTPANTS tool and are passed through to the C layer where the
- kernel basis is built.
- ngauss
Number of Gaussian components which compose the kernel. Defaults to 3. Each Gaussian has an associated polynomial degree and a sigma (width) value.
- Type:
int
- deg_fixe
Polynomial degrees associated with each Gaussian component. Length should equal ngauss. Default: [6, 4, 2]. Each entry is the maximum polynomial degree for that Gaussian basis.
- Type:
List[int]
- sigma_gauss
Widths (sigma) of each Gaussian component in pixels. Length should equal ngauss. Default: [0.7, 1.5, 3.0].
- Type:
List[float]
- Note
The following parameters from the original HOTPANTS are not implemented in this wrapper: - scale_fitthresh (-sft): Logic to scale fitthresh is not used. - min_frac_stamps (-nft): Check for minimum fraction of filled stamps is not used. - nregx and nregy: The wrapper treats the entire image as a single region, so these are fixed to 1.
- to_dict() Dict[str, Any]
Convert config to a dictionary for passing to the C extension.